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Abstract

Speech-driven facial animation is the process which uses

speech signals to automatically synthesize a talking charac-

ter. The majority of work in this domain creates a mapping

from audio features to visual features. This often requires post-

processing using computer graphics techniques to produce re-

alistic albeit subject dependent results. We present a system for

generating videos of a talking head, using a still image of a

person and an audio clip containing speech, that does not rely

on any handcrafted intermediate features. To the best of our

knowledge, this is the first method capable of generating sub-

ject independent realistic videos directly from raw audio. Our

method can generate videos which have (a) lip movements that

are in sync with the audio and (b) natural facial expressions

such as blinks and eyebrow movements. We achieve this by us-

ing a temporal GAN with 2 discriminators, which are capable

of capturing different aspects of the video. The generated videos

are evaluated based on their sharpness, reconstruction quality,

and lip-reading accuracy. Finally, a user study is conducted,

confirming that temporal GANs lead to more natural sequences

than a static GAN-based approach.

1. Introduction

The problem of generating realistic talking heads is multi-

faceted, requiring high-quality faces, lip movements synchro-

nized with the audio, and plausible facial expressions. Such

systems could simplify the film animation process through au-

tomatic generation from the voice acting and generating oc-

cluded parts of the face. Additionally, this technology can im-

prove band-limited visual telecommunications by either gener-

ating the entire visual content based on the audio or filling in

dropped frames.

The majority of research in this domain has focused on map-

ping audio features (e.g. MFCCs) to visual features (e.g. land-

marks, visemes) and using computer graphics (CG) methods to

generate realistic faces [7]. Some methods avoid the use of CG

by selecting frames from a person-specific database and com-

bining them to form a video [11].

Subject independent approaches have also been proposed

that transform audio features to video frames [3] but there is still

no method to directly transform raw audio to video. Further-

more, many methods restrict the problem to generating only the

mouth. Even techniques that generate the entire face are primar-
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Figure 1: The proposed end-to-end face synthesis model, ca-

pable of producing realistic sequences of faces using one still

image and an audio track containing speech. The generated

sequences exhibit smoothness and natural expressions such as

blinks and frowns.

ily focused on obtaining realistic lip movements, and typically

neglect the importance of generating natural facial expressions.

Some methods generate frames based solely on present in-

formation [3], without taking into account the facial dynam-

ics. This makes generating natural sequences, which are char-

acterized by a seamless transition between frames, challeng-

ing. Some video generation methods have dealt with this prob-

lem by generating the entire sequence at once [13] or in small

batches [10]. However, this introduces a lag in the generation

process, prohibiting their use in real-time applications and re-

quiring fixed length sequences for training.

We propose a temporal generative adversarial network

(GAN), capable of generating a video of a talking head from

an audio signal and a single still image 1 (see Fig. 1). First,

our model captures the dynamics of the entire face producing

not only synchronized mouth movements but also natural facial

expressions, such as eyebrow raises, frowns and blinks. Facial

gestures are very important since their absence is a telltale sign

that can be used to detect synthesized videos [8]. Our model is

able to produce such expressions thanks to the use of a sequence

discriminator.

Secondly, our method is subject independent, does not rely

on handcrafted audio or visual features, and requires no post-

processing. To the best of our knowledge, this is the first end-

to-end technique that generates talking faces directly from the

raw audio waveform.

Evaluation is performed in a subject independent way on

the GRID [4] and TCD TIMIT [6] datasets, where our model

achieves truly natural results. We measure the image quality

using popular reconstruction and sharpness metrics, and com-

pare it to a non-temporal approach. Additionally, we propose

1Videos are available here: https://sites.google.com/view/

facialsynthesis/home
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Figure 2: The deep model for speech-driven facial synthesis.

This uses 2 discriminators to incorporate the different aspects

of a realistic video. Details about the architecture are presented

in the supplementary material.

using lip reading techniques to verify the accuracy of the spo-

ken words and face verification to ensure that the identity of the

speaker is maintained throughout the sequence.

2. End-to-End Speech-Driven Facial Synthesis

The proposed architecture for speech-driven facial synthesis

is shown in Fig. 2. The system is made up of a generator and 2

discriminators, each of which evaluates the generated sequence

from a different perspective. The capability of the generator

to capture various aspects of natural sequences is directly pro-

portional to the ability of each discriminator to discern videos

based on them.

2.1. Generator

The inputs to the generator networks consist of a single

image and an audio signal, which is divided into overlapping

frames each corresponding to 0.16 seconds. The generator can

be conceptually divided into subnetworks as shown in Fig. 3.

Using an RNN-based generator allows us to synthesize videos

frame-by-frame, which is necessary for real-time applications.

2.1.1 Identity Encoder

The speaker’s identity is encoded using a 6 layer CNN. Each

layer uses strided 2D convolutions, followed by batch normal-

ization and ReLU activation functions. The Identity Encoder

network reduces the input image to a 50 dimensional encoding

zid.

2.1.2 Context Encoder

Audio frames are encoded using a network comprising of 1D

convolutions followed by batch normalization and ReLU acti-

vations. The initial convolutional layer starts with a large ker-

nel which helps limit the depth of the network while ensuring

that the low-level features are meaningful. Subsequent layers

use smaller kernels until an embedding of the desired size is

achieved. The audio frame encodings are input into a 2 layer

GRU, which produces a context encoding zc with 256 elements.

2.1.3 Frame Decoder

The identity encoding zid is concatenated to the context encod-

ing zc and a noise component zn to form the latent represen-
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Figure 3: The architecture of the (a) Generator which consists

of a Context Encoder (audio encoder and RNN), an Identity En-

coder, a Frame Decoder and Noise Generator (b) Sequence

Discriminator, consisting of an audio encoder, an image en-

coder, GRUs and a small classifier.

tation. The 10-dimensional zn vector is obtained from a Noise

Generator, which is a 1-layer GRU that takes Gaussian noise

as input. The Frame Decoder is a CNN that uses strided trans-

posed convolutions to produce the video frames from the latent

representation. A U-Net architecture is used with skip connec-

tions between the Identity Encoder and the Frame Decoder to

help preserve the identity of the subject.

2.2. Discriminators

Our system has two different types of discriminator. The

Frame Discriminator helps achieve a high-quality reconstruc-

tion of the speakers’ face throughout the video. The Sequence

Discriminator ensures that the frames form a cohesive video

which exhibits natural movements and is synchronized with the

audio.

2.2.1 Frame Discriminator

The Frame Discriminator is a 6-layer CNN that determines

whether a frame is real or not. Adversarial training with this dis-

criminator ensures that the generated frames are realistic. The

original still frame is used as a condition in this network, con-

catenated channel-wise to the target frame to form the input as
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shown in Fig. 3. This enforces the person’s identity on the

frame.

2.2.2 Sequence Discriminator

The Sequence Discriminator presented in Fig. 3 distinguishes

between real and synthetic videos. The discriminator receives

a frame at every time step, which is encoded using a CNN and

then fed into a 2-layer GRU. A small (2-layer) classifier is used

at the end of the sequence to determine if the sequence is real or

not. The audio is added as a conditional input to the network,

allowing this discriminator to classify speech-video pairs.

2.3. Training

The Frame discriminator (Dimg) is trained on frames that

are sampled uniformly from a video x using a sampling func-

tion S(x). The Sequence discriminator (Dseq), classifies based

on the entire sequence x and audio a. The loss for each discrim-

inator contributes to the total loss shown in eq. 1.

Ladv(Dimg, DSeq, G) = Ex∼Pd
[logDimg(S(x), x1)]

+Ez∼Pz
[log(1−Dimg(S(G(z)), x1))]

+Ex∼Pd
[logDseq(x, a)] + Ez∼Pz

[log(1−Dseq(G(z), a))]

(1)

An L1 reconstruction loss is also used to improve the syn-

chronization of the mouth movements. However we only apply

the reconstruction loss to the lower half of the image since it

discourages the generation of facial expressions. For a ground

truth frame F and a generated frame G with dimensions W×H

the reconstruction loss at the pixel level is:

LL1
=

∑

p∈[0,W ]×[H
2
,H]

|Fp −Gp| (2)

The final objective is to obtain the optimal generator G∗,

which satisfies eq. 3. The model is trained until no improve-

ment is observed on the reconstruction metrics on the validation

set for 10 epochs. The λ hyperparameter controls the contribu-

tion of each loss factor and was set to 400 following a tuning

procedure on the validation set.

argmin
G

max
D

Ladv + λLL1 (3)

We used Adam for all the networks with a learning rate of

0.0002 for the Generator and 0.001 Frame Discriminator which

decay after epoch 20 with a rate of 10%. The Sequence Discrim-

inator uses a smaller fixed learning rate of 5 · 10−5.

3. Experiments

3.1. Datasets

The GRID dataset has 33 speakers each uttering 1000 short

phrases, containing 6 words taken from a limited dictionary.

The TCD TIMIT dataset has 59 speakers uttering approximately

100 phonetically rich sentences each. We use the recommended

data split for the TCD TIMIT dataset but exclude some of the

test speakers and use them as a validation set. For the GRID

dataset speakers are divided into training, validation and test

sets with a 50% − 20% − 30% split respectively. As part of

our preprocessing all faces are aligned to the canonical face and

images are normalized. We increase the size of the training set

by mirroring the training videos.

3.2. Metrics

We use common reconstruction metrics such as the peak

signal-to-noise ratio (PSNR) and the structural similarity

(SSIM) index to evaluate the generated videos. However, it is

important to note that reconstruction metrics penalize videos for

any spontaneous expression. Frame sharpness is evaluated us-

ing the cumulative probability blur detection (CPBD) measure

[9], which determines blur based on the presence of edges in the

image and the frequency domain blurriness measure (FDBM)

proposed in [5], which is based on the spectrum of the image.

For these metrics larger values imply better quality.

The content of the videos is evaluated based on how well

the video captures identity of the target and on the accuracy of

the spoken words. We verify the identity of the speaker us-

ing the average content distance (ACD) [12], which measures

the average Euclidean distance of the still image representa-

tion, obtained using OpenFace [1], from the representation of

the generated frames. The accuracy of the spoken message is

measured using the word error rate (WER) achieved by a pre-

trained lip-reading model (LipNet [2]). For both content metrics

lower values indicate better accuracy.

3.3. Qualitative Results

Our method is capable of producing realistic videos of previ-

ously unseen faces and audio clips taken from the test set. The

same audio used on different identities is shown in Fig. 4. From

visual inspection it is evident that the lips are consistently mov-

ing similarly to the ground truth video. Our method not only

produces accurate lip movements but also natural videos that

display characteristic human expressions such as frowns and

blinks, examples of which are shown in Fig. 5.

We compare our model to a static method that produces

video frames using a sliding window of audio samples like that

used in [3]. This is a GAN-based method that uses a combina-

tion of an L1 loss and an adversarial loss on individual frames.

We use this method as the baseline for our quantitative assess-

ment in the following section. This baseline produces sequences

characterized by jitter, which becomes worse in cases where the

audio is silent. This is likely due to the fact that there are multi-

ple mouth shapes that correspond to silence and since the model

has no knowledge of its past state generates them at random.

3.4. Quantitative Results

We measure the performance of our model on the GRID and

TCD TIMIT datasets using the metrics proposed in section 3.2

and compare it to the static baseline. Additionally, we present

the results of a 30-person survey, where users were shown 30

videos from each method and were asked to pick the more nat-

ural ones. The results in Table 1 show that our method out-

performs the static baseline in both frame quality and content

accuracy. Although the difference in performance is slight for

frame-based measures (e.g. PSNR, ACD) it is substantial in

terms of user preference and lipreading WER, where temporal

smoothness of the video and natural expressions play a signifi-

cant role.
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Figure 4: Animation of different faces using the same audio. The movement of the mouth is similar for both faces as well as for the

ground truth sequence. Both audio and still image are unseen during training.

Method PSNR SSIM FDBM CPBD ACD User WER

G
R

ID Proposed Model 27.98
¯

0.844
¯

0.114
¯

0.277 1.02
¯

·10−4 79.77
¯

% 25.4
¯

%

Baseline 27.39 0.831 0.113 0.280
¯

1.07 ·10−4 20.22% 37.2%

T
C

D Proposed Model 23.54
¯

0.697
¯

0.102
¯

0.253
¯

2.06
¯

·10−4 77.03%
¯

N/A

Baseline 23.01 0.654 0.097 0.252 2.29 ·10−4 22.97% N/A

Table 1: Performance comparison of the proposed method against the baseline. The pretrained LipNet model is not available for the

TCD TIMIT so the WER metric is omitted.

(a) Example of generated frown (b) Example of generated blink

Figure 5: Facial expressions generated using our framework in-

clude (a) frowns and (b) blinks.

We further evaluate the realism of the generated videos

through an online Turing test. In this test users are shown

10 videos randomly chosen from GRID and TCD-TIMIT

databases and are asked to label them as real or fake. Responses

from 316 users were collected with the average user labeling

correctly 63% of the videos.

4. Conclusion and Future Work

In this work we have presented an end-to-end model using

temporal GANs for speech-driven facial animation. Our method

produces more coherent sequences and more accurate mouth

movements compared to the static approach and also produces

facial expressions like blinks and frowns. We believe that these

improvements are not only a result of using a temporal genera-

tor but also due to the use of the conditional Sequence Discrim-

inator which encourages spontaneous facial gestures. Moving

forward, we would like to capture and reflect the mood of the

speaker in the facial expressions.
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